2 research outputs found

    Neural Likelihoods via Cumulative Distribution Functions

    Get PDF
    We leverage neural networks as universal approximators of monotonic functions to build a parameterization of conditional cumulative distribution functions (CDFs). By the application of automatic differentiation with respect to response variables and then to parameters of this CDF representation, we are able to build black box CDF and density estimators. A suite of families is introduced as alternative constructions for the multivariate case. At one extreme, the simplest construction is a competitive density estimator against state-of-the-art deep learning methods, although it does not provide an easily computable representation of multivariate CDFs. At the other extreme, we have a flexible construction from which multivariate CDF evaluations and marginalizations can be obtained by a simple forward pass in a deep neural net, but where the computation of the likelihood scales exponentially with dimensionality. Alternatives in between the extremes are discussed. We evaluate the different representations empirically on a variety of tasks involving tail area probabilities, tail dependence and (partial) density estimation.Comment: 10 page

    Cumulative Distribution Functions As The Foundation For Probabilistic Models

    Get PDF
    This thesis discusses applications of probabilistic and connectionist models for constructing and training cumulative distribution functions (CDFs). First, it is shown how existing tools from the copula literature can be combined to build probabilistic models. It is found that this simple construction leads to numerical and scalability issues that make training and inference challenging. Next, several innovative ideas, combining neural networks, automatic differentiation and copula functions, introduce how to assemble black-box probabilistic models. The basic building block is a cumulative distribution function that is straightforward to construct, composed of arithmetic operations and nonlinear functions. There is no need to assume any specific parametric probability density function (PDF), making the model flexible and normalisation unnecessary. The only requirement is to design a computational graph that parameterises monotonically non-decreasing functions with a constrained range. Training can be then performed using standard tools from any neural network software library. Finally, factorial hidden Markov models (FHMMs) for sequential data are presented. It is shown how to leverage cumulative distribution functions in the form of the Gaussian copula and amortised stochastic variational method to encode hidden Markov chains coherently. This approach enables efficient learning and inference to model long sequences of high-dimensional data with long-range dependencies. Tackling such complex problems was impossible with the established FHMM approximate inference algorithm. It is empirically verified on several problems that some of the estimators introduced in this work can perform comparably or better than the currently popular models. Especially for tasks requiring tail-area or marginal probabilities that can be read directly from a cumulative distribution function
    corecore